Parallel neuronal mechanisms underlying physiological force tremor in steady muscle contractions of humans.

نویسندگان

  • Constantinos N Christakos
  • Nikos A Papadimitriou
  • Sophia Erimaki
چکیده

We present results from a study of the 6-to 12-Hz force tremor in relation to motor unit (MU) firing synchrony. Our experimental observations from 32 subjects, 321 contractions, and 427 recorded MUs reveal that tremor is accompanied by corresponding, in-phase MU rhythms that are additional to the ones at the MU intrinsic firing rates. This rhythmical synchrony is widespread and has a uniform strength that ranges from near zero to very large (MU/MU coherence > 0.50) in different contractions. Both the synchrony and the tremor are suppressed during ischemia, and this strongly suggests an involvement of spindle feedback in their generation. Furthermore, in the presence of substantial synchrony, the tremor enhancement, relative to the minimal tremor of ischemia, reflects the strength of the synchrony. Theoretical considerations based on these observations indicate that the muscle force signal is expected to show 1) frequency components in the band of the firing rates of the last-recruited, large MUs, and 2) because of the synchronized MU rhythms, an additional, distinct component with a size reflecting the strength of synchrony. Furthermore, synchronized MU rhythms, with frequencies in the 6- to 12-Hz range, are expected to arise from self-oscillations in the monosynaptic stretch reflex loop, due primarily to the associated muscle delay (several tens of milliseconds). Our results therefore reveal the parallel action of two tremor mechanisms, one of which involves MU synchrony probably caused by loop action. Clearly, the results on the synchrony and its impact also apply to other possible generators of tremor synchrony, including supraspinal ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occurrence of widespread motor-unit firing correlations in muscle contractions: their role in the generation of tremor and time-varying voluntary force.

The firing behavior of motor units (MUs) of the first dorsal interrosseus muscle of the hand was examined during both constant-force and varying-force (sinusoidal or broadband random variations) isometric contractions in healthy adults. The emphasis was on the analysis of MU synchrony with an efficient and sensitive method. In static contractions, widespread and strong MU firing correlations, w...

متن کامل

Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control.

KEY POINTS In tonic, isometric, plantarflexion contractions, physiological tremor increases as the ankle joint becomes plantarflexed. Modulation of physiological tremor as a function of muscle stretch differs from that of the stretch reflex amplitude. Amplitude of physiological tremor may be altered as a function of reflex pathway gains. Healthy humans likely increase their γ-static fusimotor d...

متن کامل

Neural correlates of task-related changes in physiological tremor.

Appropriate control of muscle contraction requires integration of command signals with sensory feedback. Sensorimotor integration is often studied under conditions in which muscle force is controlled with visual feedback. While it is known that alteration of visual feedback can influence task performance, the underlying changes in neural drive to the muscles are not well understood. In this stu...

متن کامل

Coherent motor unit rhythms in the 6-10 Hz range during time-varying voluntary muscle contractions: neural mechanism and relation to rhythmical motor control.

In quasi-sinusoidal (0.5-3.0 Hz) voluntary muscle contractions, we studied the 6- to 10-Hz motor unit (MU) firing synchrony and muscle force oscillation with emphasis on their neural substrate and relation to rhythmical motor control. Our analyses were performed on data from 121 contractions of a finger muscle in 24 human subjects. They demonstrate that coherent 6- to 10-Hz components of MU dis...

متن کامل

Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles.

The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyogr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2006